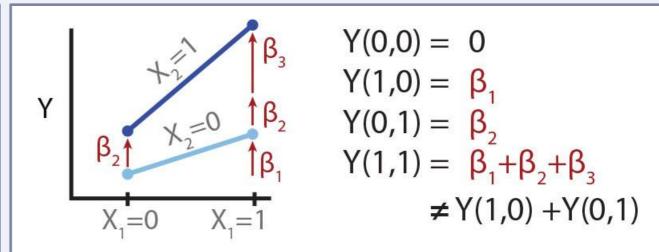


Confronting the Missing Epistasis Problem: On the Reproducibility of Gene-Gene Interactions


William Murk
Ph.D. Candidate
Yale School of Public Health

Statistical interaction

Additive

Y $\begin{array}{cccc} Y(0,0) &= 0 \\ Y(1,0) &= \beta_1 \\ Y(0,1) &= \beta_2 \\ Y(1,1) &= \beta_1 + \beta_2 \\ Y(1,0) &= Y(1,0) + Y(0,1) \end{array}$

Non-additive

Y = Intercept +
$$\beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

 $\beta_3 = 0 \longrightarrow \text{No interaction}$
 $\beta_3 \neq 0 \longrightarrow \text{Interaction}$

Why study interactions?

Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis

Haifeng Shaoa,b,1, Lindsay C. Burragea,b,1, David S. Sinasaca,1, Annie E. Hilla, Sheila R. Ernesta, William O'Brienc, Hayden-William Courtlandd, Karl J. Jepsend, Andrew Kirbye, E. J. Kulbokase, Mark J. Dalye, Karl W. Bromang, Eric S. Landerf,h,i,2,3, and Joseph H. Nadeaua,b,j,k,2,3

Department of Genetics and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106; Center for Proteomics and Bioinformatics and ^kDepartment of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029; Center for Human Genetics Research, Massachusetts General Hospital Simches Research Center, Boston, MA 02114: Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142: Department of Biostatistics and

doi:10.1038/nature11510

Epistasis as the primary factor in molecular evolution

Michael S. Breen¹, Carsten Kemena¹, Peter K. Vlasov¹, Cedric Notredame¹ & Fyodor A. Kondrashov^{1,2}

25 OCTOBER 2012 | VOL 490 | NATURE | 535

obscure. A sizable fraction of amino-acid substitutions seem to be fixed by positive selection 1-4, but it is unclear to what degree long-

The main forces directing long-term molecular evolution remain adaptation, such as a housekeeping protein, then the same amino-acid state should be acceptable in an orthologous site in a different species. However, if epistasis is common then amino-acid substitutions that

The mystery of missing heritability: Genetic interactions create phantom heritability

Or Zuka, Eliana Hechtera, Shamil R. Sunyaeva,b, and Eric S. Landera,1

Broad Institute of MIT and Harvard, Cambridge, MA 02142; and ^bGenetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115

Contributed by Eric S. Lander, December 5, 2011 (sent for review October 9, 2011)

The curse of dimensionality

Order:

k = 2

No. SNPs:	10 ⁴	10 ⁵	10 ⁶
No. Interactions:	10 ⁷	10 ⁹	10 ¹¹
Time Required:	83 min	5.8 d	1.6 yr
Bonferroni threshold	10-9	10-11	10-13

k = 3

No. SNPs:	10 ⁴	10 ⁵	10 ⁶
No. Interactions:	10 ¹¹	10 ¹⁴	10 ¹⁷
Time Required:	192.8 d	528 yr	5.3 x 10 ⁵ yr
Bonferroni threshold	10 ⁻¹³	10 ⁻¹⁶	10-19

Aim:

To evaluate the robustness and reproducibility of reported gene-gene interactions in asthma

Study design

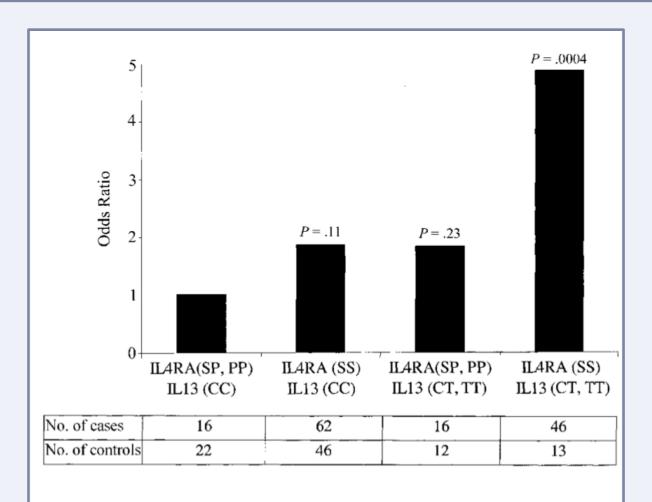
Literature search

Identify all gene-gene interactions in asthma

Assess "robustness" of original reports

- •Replication?
- •Direction of effect described?
- •Explicit test for interaction?

Replication in independent data


Explicit vs. non-explicit tests for interaction

Explicit .

$$\ln(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

Nonexplicit:

$$ln(p/(1-p)) = \beta_0 + \beta_3 X_1 X_2$$

Figure 1 Interaction of *ILARA* and *IL13* genotypes. Bars indicate the ORs between the different combinations of genotypes for *ILARA* (S478P) and *IL13* (-1111 C/T). The nonrisk genotype for each gene was used as the reference OR.

Howard et al. Am J Hum Genet 2002. 70: 230-236.

Literature Search

(asthma OR asthmatic)

AND

(gene OR genes OR genetic OR locus OR loci OR genome OR genomic OR chromosome OR chromosomes OR genomewide OR "genome wide" OR GWAS OR polymorphism OR polymorphisms OR SNP OR SNPs)

AND

(epistasis OR epistatic OR interact OR interacts OR interaction OR interactions OR multilocus OR "multi locus" OR additive OR multiplicative OR MDR OR multifactor OR "multi factor" OR forest OR forests OR combinatorial OR partition OR partitions OR stratified OR strata OR stratum OR stratification OR tree OR trees OR cart OR polygenic OR multigenic OR multimarker)

N = 46 studies

Table 1	Original	characteristics	of	included	interactions
---------	----------	-----------------	----	----------	--------------

Characteristic	N	%
Total number of reported interactions	191	100
Interaction order		
2	139	72.8
3	35	18.3
4	8	4.2
5	5	2.6
6+	4	2.1
Analytical method		
Logistic regression	59	30.9
MDR (any variation)	45	23.6
MDR alone	(33)	(17.3)
MDR with logistic regression	(6)	(3.1)
GMDR	(3)	(1.6)
MB-MDR with logistic regression	(3)	(1.6)
Chi-square test (contingency table analysis)	32	16.8
ROSETTA	17	8.9
ALPS	9	4.7
BN-BMLA with logistic regression	8	4.2
Recursive partitioning	4	2.1
Set association analysis	4	2.1
FAMHAP	3	1.6
Generalized estimating equation	3	1.6
Log-linear modeling	2	1.0
Cox proportional hazards regression	1	0.5
PEAK	1	0.5
Unclear	3	1.6

Characteristic	N	%
Interaction explicitly identified		
Yes	110	57.6
No	76	39.8
Unclear	5	2.6
Internal replication		
Internal replication attempted	29	15.2
Attempted and replicated	14	7.3
Attempted and not replicated	15	79
Internal replication not attempted	162	84.8
Direction inferable		
Yes—multiple association measures reported or inferable	64	33.5
Yes—only one association measure reported or inferable	39	20.4
No-no association measure reported or inferable	88	46.1

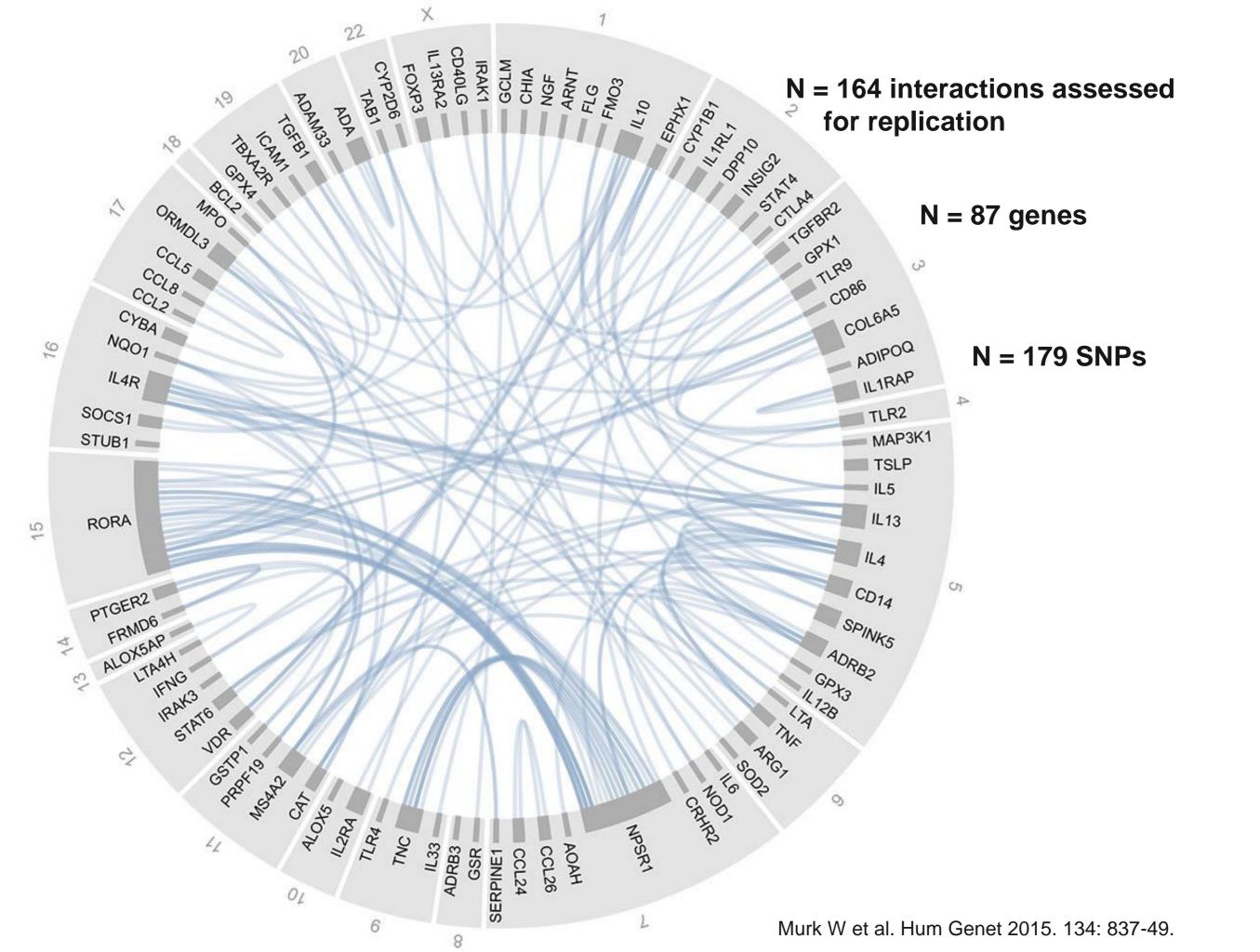
The NEW ENGLAND JOURNAL of MEDICINE

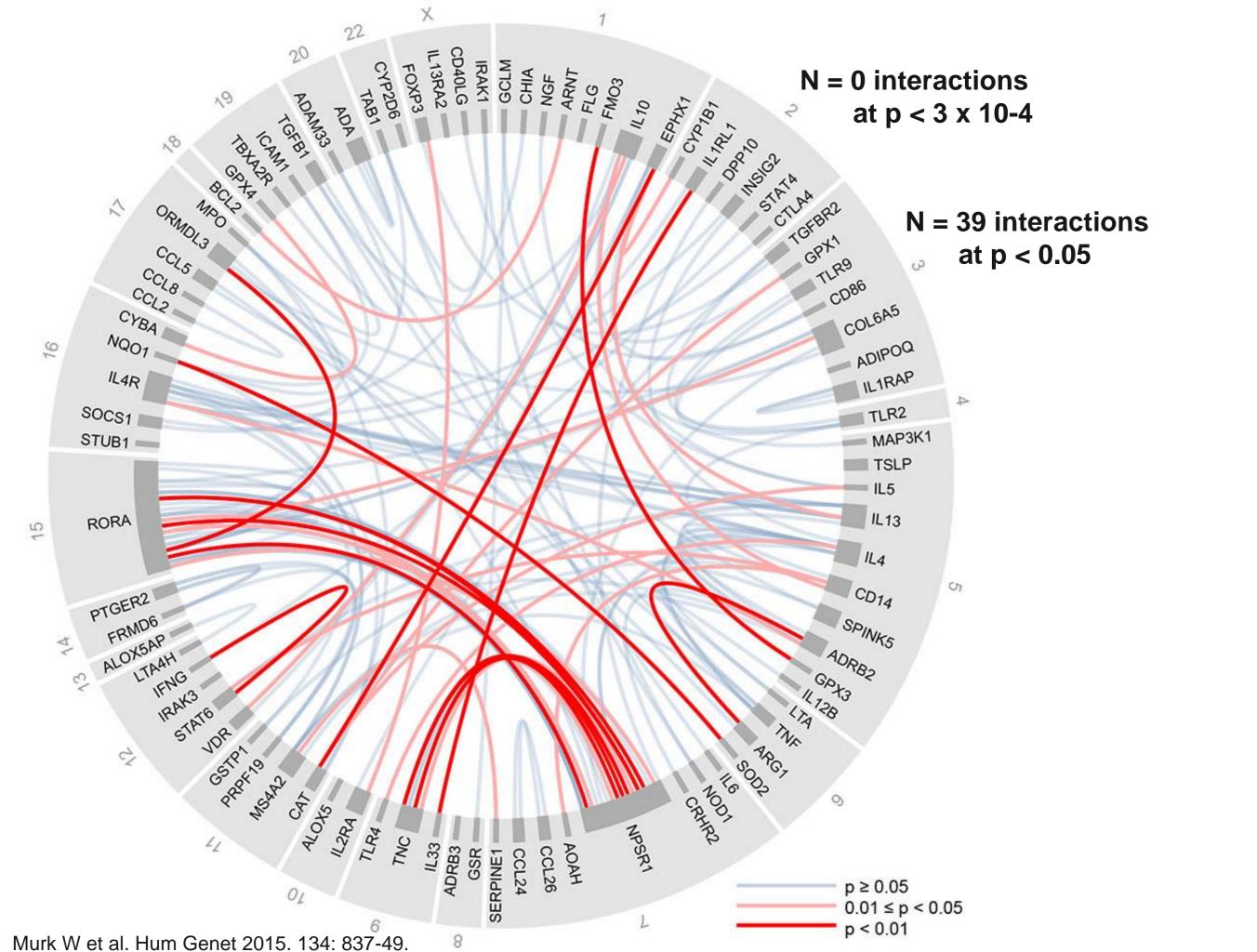
ORIGINAL ARTICLE

A Large-Scale, Consortium-Based Genomewide Association Study of Asthma

Miriam F. Moffatt, D.Phil., Ivo G. Gut, Ph.D., Florence Demenais, M.D., David P. Strachan, M.D., Emmanuelle Bouzigon, M.D., Ph.D., Simon Heath, Ph.D., Erika von Mutius, M.D., Martin Farrall, F.R.C.Path., Mark Lathrop, Ph.D., and William O.C.M. Cookson, M.D., D.Phil., for the GABRIEL Consortium*

N Engl J Med 2010;363:1211-21.

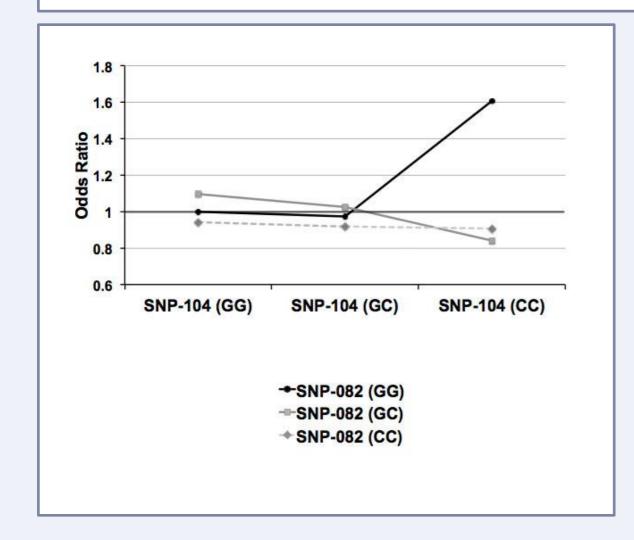

Study definitions and subject counts


Study	Country	Case definition	Control definition	N, cases	N, controls
BAMSE	Sweden	Ever had doctor-diagnosed asthma (self-report).	Did not have a history of asthma or other allergic diseases (self-report).	226	235
BUSSELTON	Australia	Ever had doctor-diagnosed asthma (self-report).	Did not ever have doctor-diagnosed asthma (self-report).	520	685
EGEA	France	Ever had asthma attacks (self-report).	Did not ever have asthma attacks (self-report).	120	444
GABRIEL-AS	Austria, Germany, Switzerland	Ever had doctor-diagnosed asthma or had asthmatic bronchitis at least twice (self-report).	Did not ever have doctor-diagnosed asthma and no asthmatic bronchitis diagnosed at least twice (self-report).	802	823
KARELIA	Finland, Russia	Ever had doctor-diagnosed asthma (self-report).	Did not ever have doctor-diagnosed asthma (self-report).	57	68
KMSU	Russia	Asthma diagnosed on the basis of symptoms (recurrent cough, wheezing, or dyspnea), airway obstruction reversibility, or airway methacholine hyperresponsiveness.	No symptoms or history of allergic disease, normal total serum IgE, normal pulmonary function.	285	261
PIAMA	The Netherlands	Ever had doctor-diagnosed asthma (self-report).	Did not have a history of asthma or other allergic diseases (self-report).	174	187
SAPALDIA	Switzerland	Ever had asthma (self-report).	Did not ever have asthma (self-report).	581	880
UFA	Russia	Asthma diagnosed on the basis of clinical examination, family and medication history, and lung function tests.	No symptoms or history of asthma or other pulmonary disease, no symptoms or history of atopy, no first-degree relatives with a history of asthma or atopy.	333	333
Total				3,098	3,916

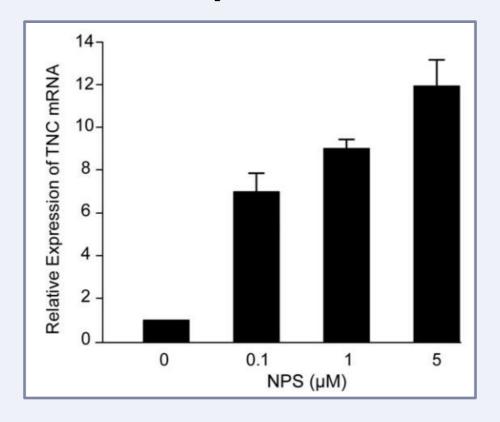
Analytical approach

Interaction order	Analytical method
2	Logistic regression, MDR
3	Logistic regression, MDR
> 3	MDR

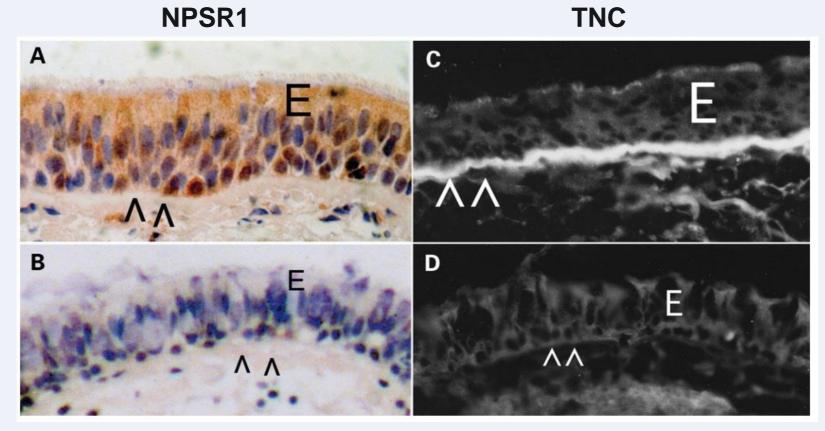
Also evaluated pairwise interactions nested within interactions of order > 2.

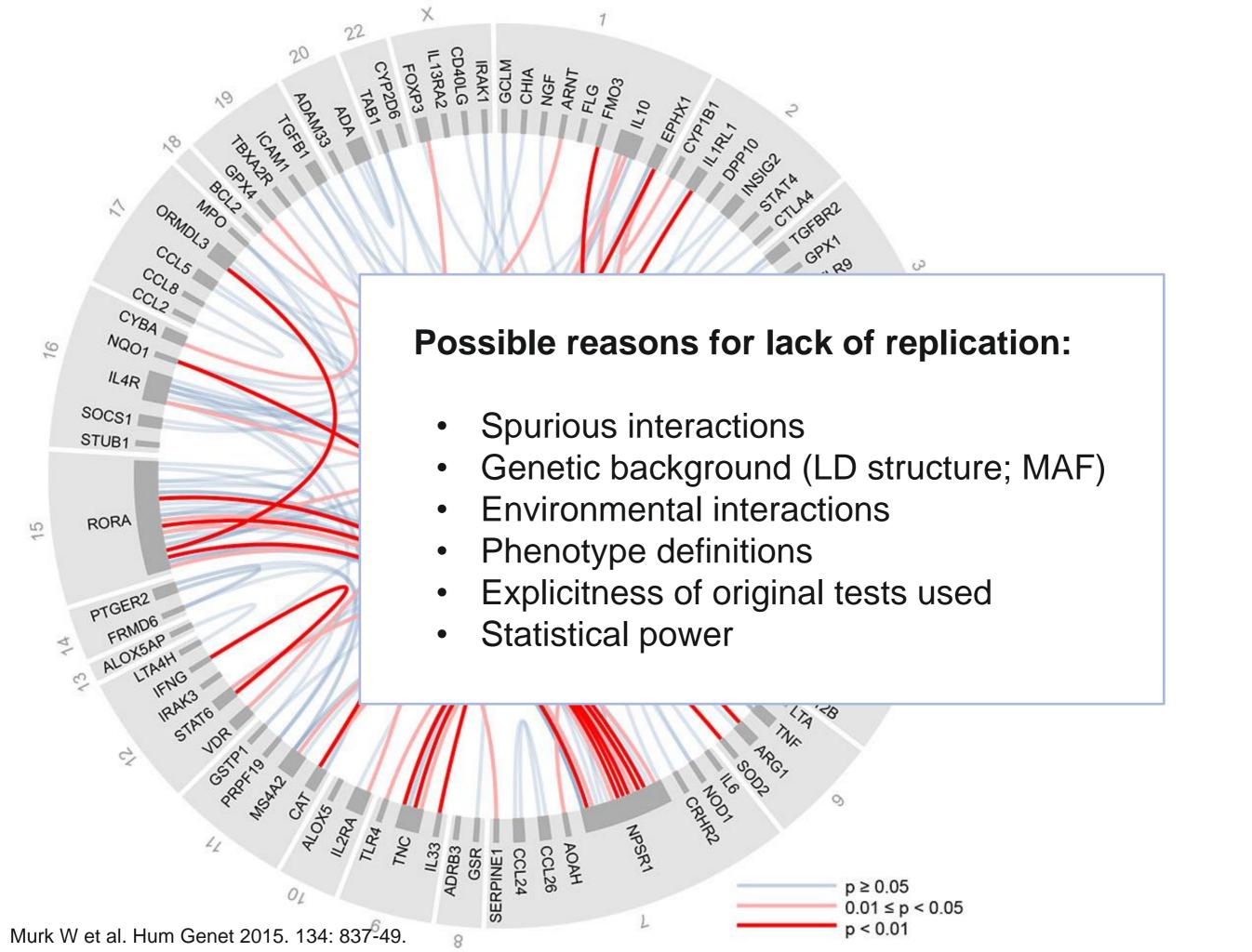


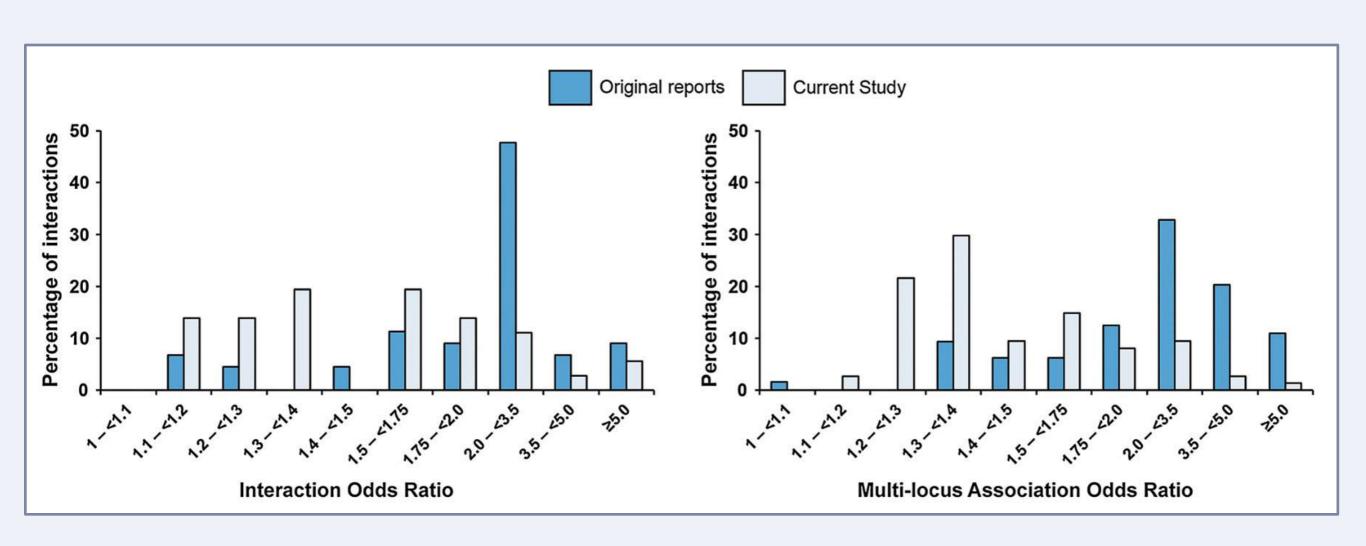
Interaction between rs3789873 (TNC) and rs323922 (NPSR1)


	_	ORIGIN	AL STUDY
		SI	NP-104
Associati	ons:	GG GC/CC	
SNP-082	GG	1 [Ref.]	1.79 (1.13, 2.85)
	GC	1 [Ref.]	0.72 (0.48, 1.08)
	СС	1 [Ref.]	0.97 (0.55, 1.73)

		CURREN	NT STUDY	
		S	NP-104	
Associati	Associations: GG		GC/CC	
SNP-082	GG	1 [Ref.]	1.07 (0.90, 1.27) .429	
	GC	1 [Ref.]	0.92 (0.79, 1.06) .224	
	СС	1 [Ref.]	0.99 (0.77, 1.27) .948	


	Interaction Term			
Sub-study:	SNP-104 (Rec-C) × SNP-082 (Dom-C			
	OR (95% CI)	Р		
BAMSE	0.55 (0.14, 2.20)	.401		
BUSSELTON	0.18 (0.06, 0.54)	2.0 x 10-3		
EGEA	0.82 (0.14, 4.81)	.829		
GABRIELAS	0.84 (0.34, 2.06)	.705		
KARELIA	N/A*			
KMSU	0.93 (0.16, 5.41)	.939		
PIAMA	1.30 (0.24, 6.91)	.760		
SAPALDIA	0.48 (0.20, 1.19)	.115		
UFA	0.15 (0.03, 0.71)	.016		
Meta-analysis:				
Pooled estimate (FE)	0.50 (0.32, 0.77)	1.7 x 10-3		
Heterogeneity: I ²	22.4 %			
Heterogeneity: Q (P)	.251			
Collapsed:				
Genotype probabilities	0.51 (0.34, 0.77)	1.3 x 10-3		
Best-guess genotypes	0.49 (0.32, 0.74)	7.3 x 10-4		


Biological relationship between TNC and NPSR1


Asthmatic

Non-asthmatic

Winner's Curse

Conclusions

- Most published gene-gene interactions are not well supported, and many are not well described
- No interaction could be strictly replicated
- Suggestive evidence in support of a minority of the interactions

Acknowledgements

Andrew DeWan Michael B. Bracken Hongyu Zhao

Funding:

- Canadian Institutes of Health Research
 Doctoral Foreign Study Award; Award No. DFS 129311
- Yale School of Public Health

Data:

- GABRIEL Consortium
- European Genome-phenome Archive